

Is calcium looping a potential thermochemical energy storage system?

Published by American Chemical Society. This publication is licensed under CC-BY 4.0 . Long-term storage capability is often claimed as one of the distinct advantages of the calcium looping process as a potential thermochemical energy storage system for integration into solar power plants.

How can one ensure they are receiving enough calcium?

<div class="cico df_pExplImg" style="width:32px;height:32px;"><div class="rms_iac" style="height:32px;line-height:32px; width:32px;" data-height="32" data-width="32" data-alt="primaryExpertImage" data-class="rms_img" data-src="//th.bing.com/th?id=OSAHI.BD136F61CEBE946DB7714333019A19D4&w=32&h=32&c=12&o=6&p id=HealthExpertsQnAPAA"></div></div><div class="rms_iac" style="height:14px;line-height:14px; width:14px;" data-class="df_verified rms_img" data-data-priority="2" data-alt="Verified Expert Icon" data-height="14" data-width="14" data-src="https://r.bing.com/rp/lxMcr_hOOn6l4NfxDv-J2rp79Sc.png"></div><p class="df_Name">María F. Carzon<p class="df_Qual">Bachelor degree in Human Nutrition · 4 years of expTo find out if your calcium intake is enough, you can have blood tests to find out the calcium status of your body. However, the general recommendation could be met by taking two cups of milk per day, a yogurt, and a serving of cheese.

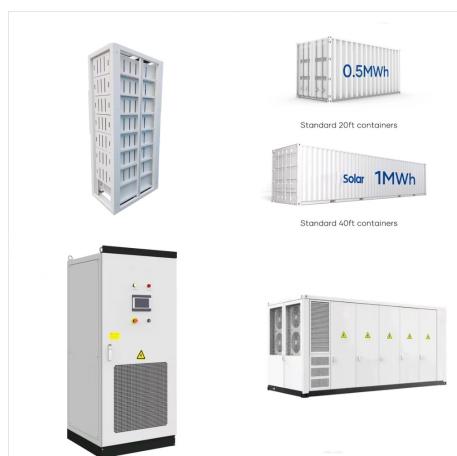
Is calcium looping a good option for solar energy storage?

Solar thermochemical energy storage based on calcium looping (CaL) process is a promising technology for next-generation concentrated solar power (CSP) systems. However, conventional calcium carbonate (CaCO₃) pellets suffer from slow reaction kinetics, poor stability, and low solar absorptance.

Is calcium-looping a promising energy conversion and storage technology?

This review focuses on the most recent developments of one of the most promising energy conversion and storage technologies- the calcium-looping. It includes the basics and barriers of calcium-looping beyond CO₂ capture and storage (CCS) and technological solutions to address the associated challenges from material to system.

What is calcium looping?


CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

lies at the heart of a vast number of industrial applications and natural processes. In the past few years, the calcium looping (CaL) process, based on the multicycle carbonation/calcination of CaO, has come into scene with a high potential to be used either for CO₂ capture or thermochemical energy storage.

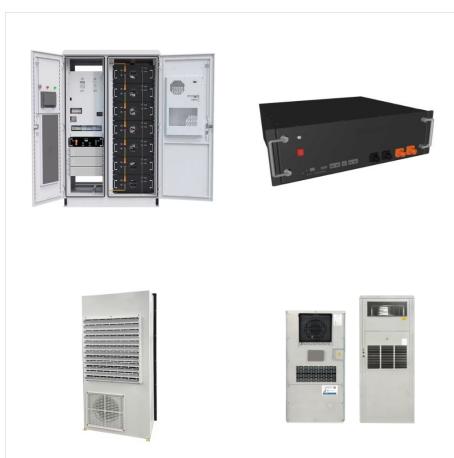
How can calcium-looping contribute to the energy integrated utilization of CCS?

By combining CO₂ conversion to H₂ -enrichment with energy storage for renewable energy sources, calcium-looping can contribute to the energy integrated utilization of CCS (EIUCCS). Those results support the rapid advancement of carbon-neutral energy to meet the current and future energy needs in transport, industry, and buildings .

Calcium looping is considered as an important high-temperature cyclic CO₂ capture and concentrated solar energy storage technology. However, the dramatic inactivation of CaO over multiple carbonation-calcination cycles has seriously restricted their practical applications.

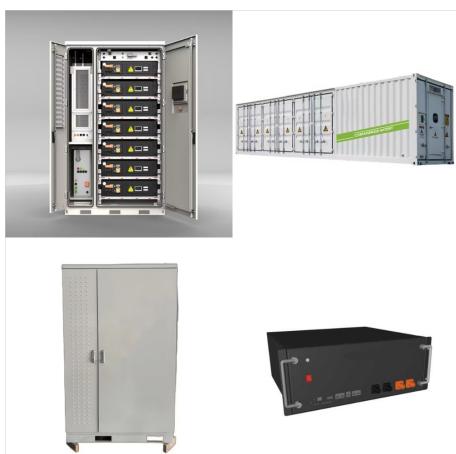
Calcium looping (CaL), a promising technology for both CO₂ capture and energy storage, holds significant potential in future carbon neutral technology strategies. In this paper, a comprehensive review of the application of CaL in CO₂ capture and thermochemical heat storage (TCHS) is offered to inform further advancements in this field.

CALCIUM LOOPING ENERGY STORAGE


SOLAR[®]

The Calcium-Looping process is a promising thermochemical energy storage method based on the multicycle calcination-carbonation of CaCO_3 - CaO to be used in concentrated solar power plants. When solar energy is available, the CaCO_3 solids are calcined at high temperature to produce CaO and CO_2 , which are stored for subsequent a?|

Calcium-looping thermochemical energy storage associated to concentrating solar plants appears as promising technology given its potential to increase the storage period and energy density of the stored material. Up to now, research efforts focused on the global efficiency of the TCES associated to different power cycles under fixed modes of


In this work, a directly irradiated fluidized-bed reactor was designed for calcium looping energy storage. The top of the fluidized-bed reactor can receive the simulated solar irradiation from the xenon lamp with a maximum a?|

CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

Energy collection, conversion and storage, renewable energy, CSP, Solar Storage . SOCRATCES will be built on previous R& D results of the project partners. indicating that the CaL process can be integrated into CSP plants for thermochemical energy storage and power generation by means of a simple closed CO₂ loop.

Although the calcium looping process has been extensively studied in the field of CO₂ capture [18], reports on its energy storage potential appeared to be rather limited until recent years. In 2012, Edwards and MateriA? proposed a calcium looping based energy storage system coupled with an air Brayton cycle [19]. The modeling results indicated

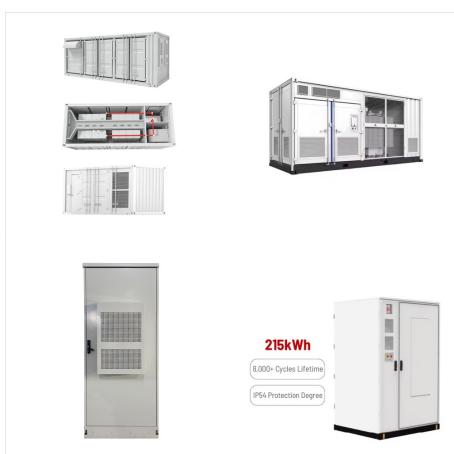
Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants, which remains still at the concept stage (Chacartegui et al. 2016; Alovisio et al. 2017). Currently, a few CSP demonstration plants are under operation worldwide incorporating thermal energy storage to generate electricity in the a?

CALCIUM LOOPING ENERGY STORAGE

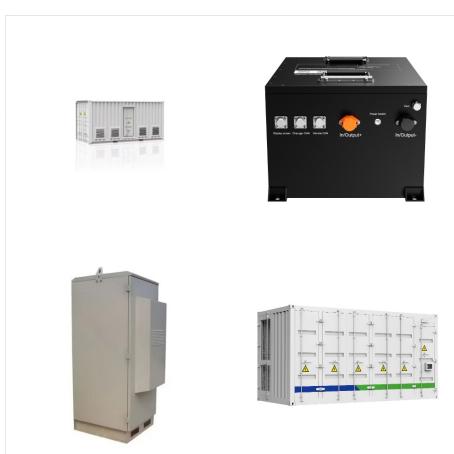
SOLAR[®]

An emerging calcium looping process, which has also been considered for energy storage, has been found to offer lower efficiency penalties (5a??8% points). This study presents a concept of the calcium looping process with inherent energy storage for decarbonisation of the coal-fired power plant.

The Calcium-Looping (CaL) process has emerged in the last years as a promising technology to face two key challenges within the future energy scenario: energy storage in renewable energy-based

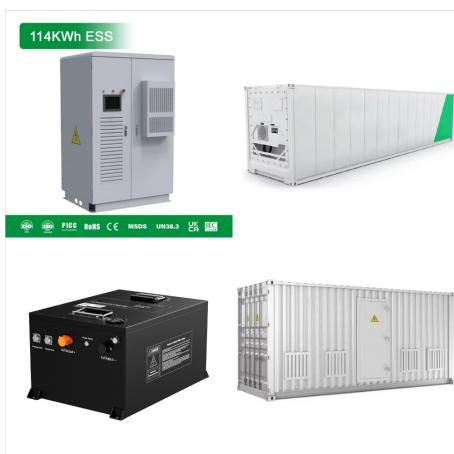

A carbonator for Calcium-looping chemical energy storage is modelled. a?c Methodology includes fluid dynamics, lime conversion kinetics and heat transfer. a?c The system is analyzed in the framework of a 100 MWth solar power plant. a?c First insights on CaL as energy storage at industrial scale are provided. a?c

CALCIUM LOOPING ENERGY STORAGE

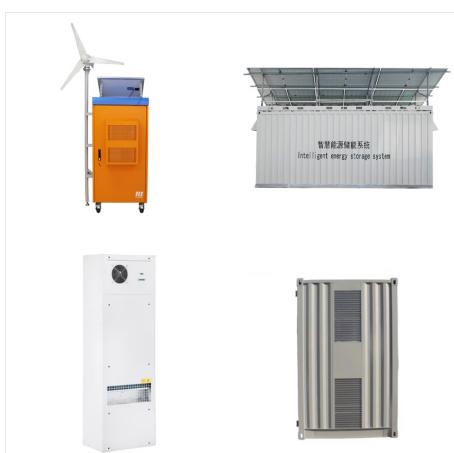

SOLAR®

The directly irradiated reactor is suitable for the solar calciner in calcium looping energy storage technology. However, the low optical absorption performance of CaCO₃ is disadvantageous for its decomposition under direct irradiation. In this work, a directly irradiated fluidized-bed reactor was designed for calcium looping energy storage. The top of the fluidized a?|

For this reason, the focus of the study reported in the present paper was calcium-looping type energy storage. Calcium-looping type thermochemical energy storage processes have been studied extensively over the last ten years and Yongliang et al. [47] present an excellent summary of these works. One of the key highlights from this review is the

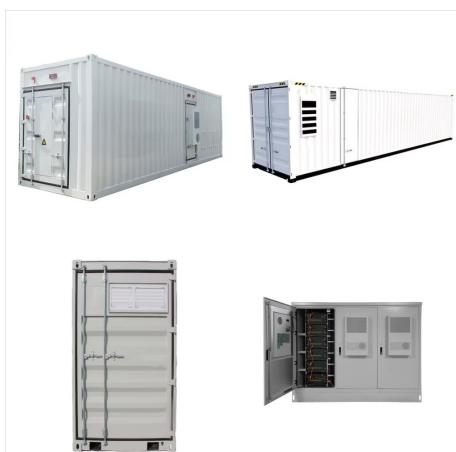

The sintering of CaO leads to the rapid decay of carbonation conversion of calcium-based material in calcium looping for post-combustion CO₂ capture and concentrated solar energy storage [17]. In the present study, adding and producing inert supports in calcium-based material is a common method to enhance the cycling stability [18].

CALCIUM LOOPING ENERGY STORAGE


SOLAR[®]

For calcium-looping and thermochemical energy storage, the primary and most-used parameters in DFT calculations include the total energy (change), electronic density, bond lengths, and dielectric response, where the cohesive energy, adsorption energy, dissociation energy, and activation energy barrier can be derived from the total energy (change).

Calcium-looping for thermochemical energy storage in concentrating solar power applications:
Evaluation of the effect of acoustic perturbation on the fluidized bed carbonation. Chemical Engineering Journal 2020, 392, 123658.


The CaL process presents several benefits in comparison with molten salts, such as a higher energy storage density and its feasibility to work at significantly higher power cycle temperatures [20]. Moreover, natural CaO precursors such as limestone or dolomite have a very low cost and are widely available and environmental friendly [[30], [31], [32]], which are a?]

CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

Affordable long-term energy storage and CO₂ capture technique are imperative to developing the future carbon-neutral energy system. This paper proposed a calcium looping system powered by excess renewable electricity to achieve long-term thermochemical energy storage, residential heat supply and carbon capture.

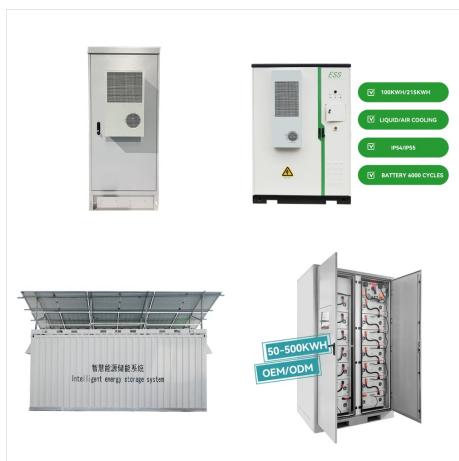
Recently, calcium-looping thermochemical energy storage becomes a research hotspot due to the following merits [15]. (1) It has a prospect of large-scale application since limestone minerals are commonly used in the calcium-looping thermochemical energy storage systems, which are low-cost, abundant, nontoxic, and widely existing in nature [16].

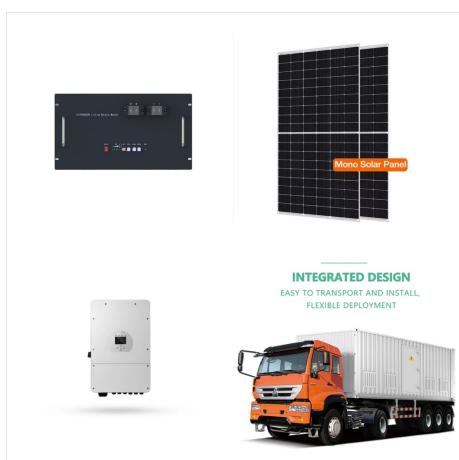
The calcium-looping thermochemical heat storage is recognized as a promising technology due to its affordable raw material expense, eco-friendliness, and superior heat storage and release capacity, thus achieving a complete thermal energy storage cycle. The calcium-based particles underwent physical phase analysis using an X-ray

CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

Calcium looping is a promising thermochemical energy storage process to be integrated into concentrating solar power plants. This work develops for the first time a comprehensive life cycle assessment of the calcium looping integration in solar plants to assess the potential of the technology from an environmental perspective.


Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants. *Energy.*, 220 (2021), Article 119715, 10.1016/j.energy.2020.119715. [View PDF](#) [View article](#) [View in Scopus](#) [View in Google Scholar](#) [66] S. Pascual, P. Lisbona, L.M. Romeo.


The modeling results are used for further economic analysis and comparison of the two types of electrified calcium looping with thermal energy storage and conventional oxyfuel combustion. This work explores the low-carbon and low-cost cement manufacturing process through electrified calcium looping with less fuel consumption. The concept may

CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

We will first introduce the background of calcium-looping, emphasizing its integration with cement decarbonization, the barriers to decarbonization, and the opportunities for calcium-looping a?|

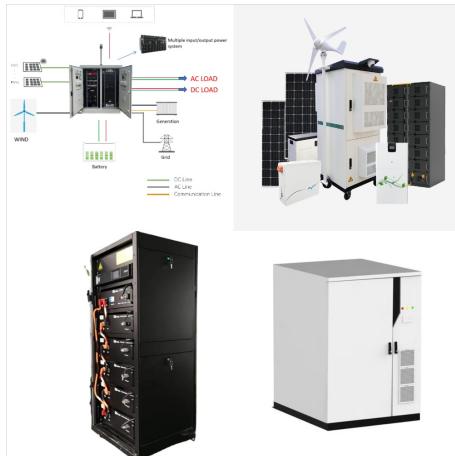
The solar-driven calcium looping process (CaL) poses a great potential for thermochemical energy storage. The calcium-based particle, a core energy carrier for CaL, however, is prone to fragmentation, significantly reducing the efficiency and stability of a?|

Thermochemical energy storage using calcium looping. Calcium looping is a chemical process that could be used to store energy, in the form of calcium oxide where CO₂ is also generated, obtained from the calcination process of the calcium carbonate. This reaction is reversible, which allows for the looping process.

CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

The authors believed that the solution to the high energy consumption problem of calcium-looping was to use solar energy as a power source and improve the material's light absorption characteristics. Ortiz et al. [48] provided a detailed review of the application of calcium-looping technology in solar power generation systems from the


This study uses thermochemical energy storage based on the calcium looping (CaL) process and takes advantage of a number of factors: high energy density (2 GJ/m³), absence of heat loss (seasonal storage), high a?

Calcium looping for energy storage in CSP plants. The energy storage system based on calcium looping process consists of two reactors, namely calciner and carbonator. In the calciner, solids fall from the top, and solar radiation provides thermal energy for calcination (Eq. (1)). In our study, we consider 100 MW of solar power input as nominal

CALCIUM LOOPING ENERGY STORAGE

SOLAR[®]

In this work, the multicycle activity of natural CaO precursors (limestone and dolomite) and Ca-based composites ($\text{Ca}_3\text{Al}_2\text{O}_6/\text{CaCO}_3$ and $\text{ZrO}_2/\text{CaCO}_3$ mixtures) has been studied for Thermochemical Energy Storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping process (CaL), using two integration schemes a?|