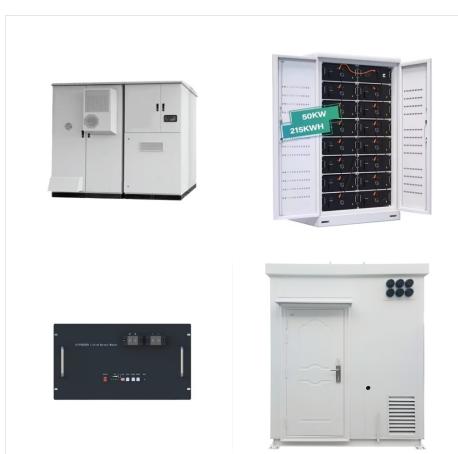


A common perception in photovoltaics has been that "first generation" silicon wafer-based solar cells eventually would be replaced by a "second generation" of lower cost thin-film technology

Third-generation photovoltaic (PV) aims to develop high-efficiency devices while still using second-generation thin-film deposition methods. The goal is to reduce cost per watt while allowing only

Third generation photovoltaics : advanced solar energy conversion Author: Martin A. Green Subject: Black-Body, White Suns.- Energy, Entropy and Efficiency.- Single Junction Cells.- Tandem Cells.- Hot Carrier Cells.- Multiple Electron-Hole Pairs per Photon.- Impurity Photovoltaic and Multiband Cells.- Thermophotovoltaic and Thermophotonic

M A GREEN THIRD GENERATION PHOTOVOLTAICS


SOLAR[®]

Since the early days of terrestrial photovoltaics, a common perception has been that "first generation" silicon wafer-based solar cells eventually would be replaced by a "second a?|

M Green, E Dunlop, J Hohla??Ebinger, M Yoshita, N Kopidakis, X Hao. Progress in photovoltaics: research and applications 29 (1), 3-15, 2021.
16303: Third generation photovoltaics: Ultraa??high conversion efficiency at low cost. MA Green. Progress in photovoltaics: Research and Applications 9 (2), 123-135, 2001. 1052:

The analysis presented in Fig. 1 was first introduced by Shockley and Queisser in 1961 and is for a solar cell of bandgap 1.1 eV operating under the AM1.5 global spectrum with 1000 W/m². 3 First and second generation photovoltaic (PV) cells have best-cell power conversion efficiencies (PCE) that are asymptotically approaching the Shockley

M A GREEN THIRD GENERATION PHOTOVOLTAICS

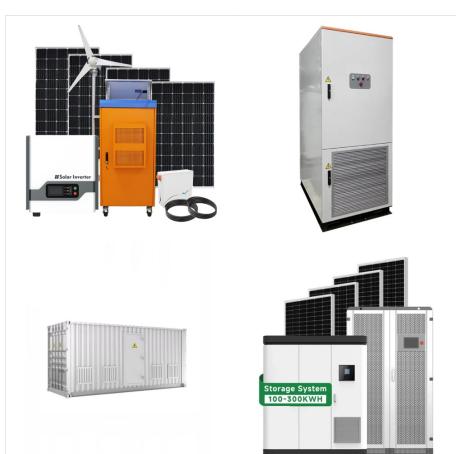
SOLAR[®]

Martin Green, one of the world's foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches

Centre for Third Generation Photovoltaics, University of New South Wales, NSW 2052, Australia. Search for other works by this author on: This Site. PubMed. Google Scholar. T. Trupke, M. A. Green, P. Wurfel; Improving solar cell efficiencies by up-conversion of sub-band-gap light. *J. Appl.*

Photovoltaics have started replacing fossil fuels as major energy generation roadmaps, targeting higher efficiencies and/or lower costs are aggressively pursued to bring PV to cost parity with grid electricity. Third generation PV technologies may overcome the fundamental limitations of photon to electron conversion in single-junction devices and, thus, improve both their efficiency and cost.

M A GREEN THIRD GENERATION PHOTOVOLTAICS

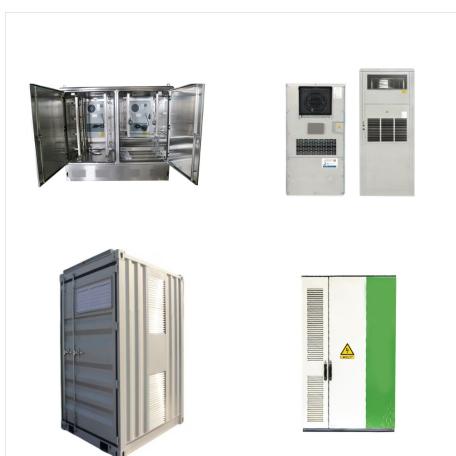

SOLAR[®]

First generation photovoltaic cells, which use Si wafers, are now being superseded by second generation, thin film devices that reduce material costs. Eventually, Green believes, these will themselves be replaced by high-performance, third generation products using new device structures.

Martin Green, one of the world's foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, a?|

Third Generation Photovoltaics: Advanced Solar Energy Conversion Green, Martin A. Abstract. Publication: Physics Today. Pub Date: December 2004 DOI: 10.1063/1.1878345 Bibcode: 2004PhT..57I..71G Keywords: solar cells; photovoltaic effects; direct energy conversion;

M A GREEN THIRD GENERATION PHOTOVOLTAICS


SOLAR[®]

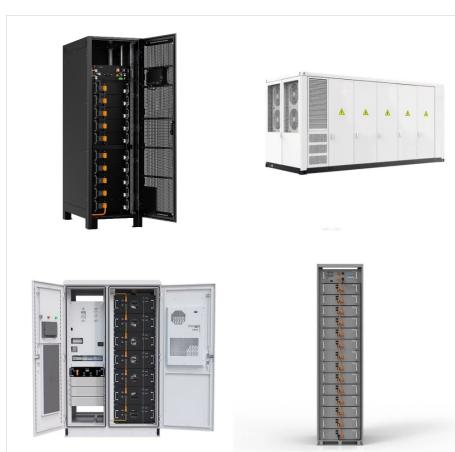
A range of more integrated approaches is possible in thin-film photovoltaics, with energy conversion efficiencies double or triple the 15 to 20% presently targeted, as described in this paper. While the photovoltaics industry is currently dominated by silicon wafer-based "first generation" technology, there is a clear move towards "second generation" thin-film a?|

The photovoltaic industry is in a phase of rapid expansion, growing at over 30 % per annum over recent years. Although technologies based on thin-film compound and alloy solar cells are under active development, most commercial solar cells presently use self-supporting bulk crystalline or multicrystalline silicon wafers, similar to those used in microelectronics.

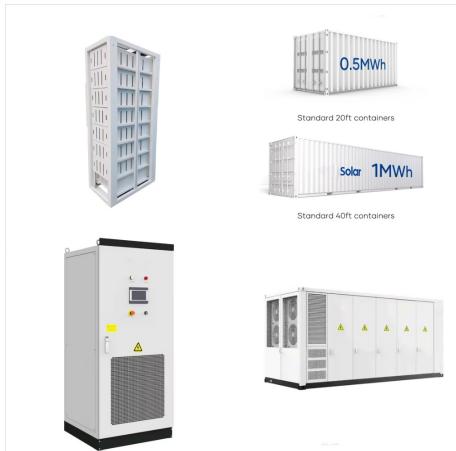
1.2 Third-Generation PV Cell Structure.

Third-generation photovoltaics can be considered as electrochemical devices. This is a main difference between them and the strictly solid-state silicon solar cells, as shown in Fig. 2. For third-generation photovoltaics, there are two mechanisms of charge transfer after the charge generation due to

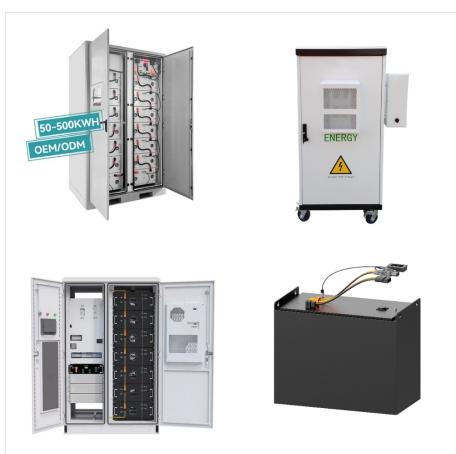
M A GREEN THIRD GENERATION PHOTOVOLTAICS


SOLAR[®]

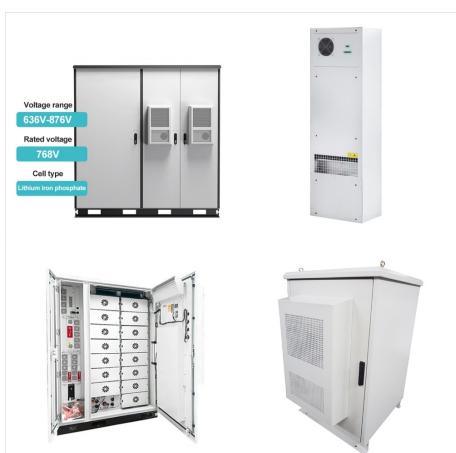
It is argued, therefore, that photovoltaics is likely to evolve, in its most mature form, to a "third generation" of high efficiency thin-film technology. By high efficiency, what is meant is energy conversion values double or triple the 15-20% range presently targeted, closer to the thermodynamic limit of 93%.


Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley-Queisser limit of 31-41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation"). Common third-generation systems include multi-layer ("tandem

Third-generation solar cells are designed to achieve high power-conversion efficiency while being low-cost to produce. These solar cells have the ability to surpass the Shockley-Queisser limit. This review focuses on different types of third-generation solar cells such as dye-sensitized solar cells, Perovskite-based cells, organic photovoltaics, quantum dot solar cells, and

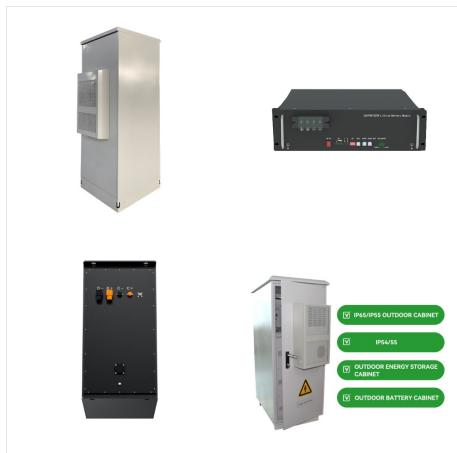

M A GREEN THIRD GENERATION PHOTOVOLTAICS

SOLAR[®]



PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2001; 9:123a??135 (DOI:10.1002/pip.360) Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost Martin A. Green*

Photovoltaics Special Research Centre, University of New South Wales, Sydney, NSW 2052, Australia


Photovoltaics have started replacing fossil fuels as major energy generation roadmaps, targeting higher efficiencies and/or lower costs are aggressively pursued to bring PV to cost parity with grid electricity. Third generation PV technologies may overcome the fundamental limitations of photon to electron conversion in single-junction devices and, thus, improve both a?|

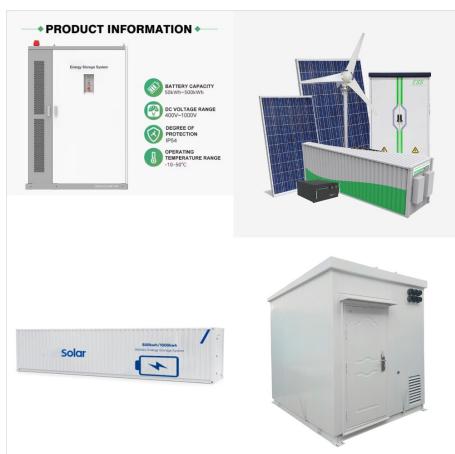
Many working in the field of photovoltaics believe that "first generation" silicon wafer-based solar cells sooner or later will be replaced by a "second generation" of lower cost thin-film technology, probably also involving a different semiconductor. Historically, CdS, a-Si, CuInSe₂, CdTe and, more recently, thin-film Si have been regarded as key thin-film candidates.

M A GREEN THIRD GENERATION PHOTOVOLTAICS

SOLAR[®]

Martin Green, one of the world's foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films.

Many working in the field of photovoltaics believe that "first generation" silicon wafer-based solar cells sooner or later will be replaced by a "second generation" of lower cost thin-film technology, probably also involving a different semiconductor. Historically, CdS, a-Si, CuInSe₂, CdTe and, more recently, thin-film Si have been regarded as key thin-film a?|


While the photovoltaics industry is currently dominated by silicon wafer-based "first generation" technology, there is a clear move towards "second generation" thin-film technology. Second generation technology has significant cost advantages over wafer-based modules, due to reduced materials usage and large-area processing. Even with second generation technology, a?|

M A GREEN THIRD GENERATION PHOTOVOLTAICS

SOLAR[®]

Martin Green, one of the world's foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films.

M.A. Green Third Generation Photovoltaics
Advanced Solar Energy Conversion With 63 Figures
123 Professor Martin A. Green University of South Wales Centre of Excellence for Advanced Silicon Photovoltaics and Photonics Sydney, NSW, 2052, Australia Series Editors: Professor Takeshi Kamiya

ZnO is mainly used in emerging photovoltaics as compact or mesoporous layers as a TCO or a n-type semiconductor. On the one hand, Fig. 1a shows the different uses of ZnO in third-generation solar cells. In the case of organic, perovskite, and kesterite-based solar cells, ZnO is usually used as a compact layer while for dye-sensitized and quantum dots solar cells a?